SFPQ, a multifunctional nuclear protein, regulates the transcription of PDE3A
نویسندگان
چکیده
Phosphodiesterase 3A (PDE3A), a member of the cGMP-inhibited cyclic nucleotide phosphodiesterase (PDE) family, plays important roles in oocyte maturation and vascular smooth muscle cell proliferation. However, the molecular mechanisms that regulate PDE3A gene expression remain largely unknown. In this study, we investigated the transcriptional regulation of PDE3A , and found that the splicing factor proline and glutamine rich (SFPQ) protein modulated PDE3A mRNA levels. Multiple transcription start sites (TSS1, 2, and 3) were identified within the first exon of PDE3A using 5'-rapid amplification of cDNA ends (RACE). Variable expression levels of three PDE3A variants were also observed in human tissues and HeLa cells. Several putative SFPQ-binding sites were identified upstream of the regulatory region of PDE3A -TSSs using chromatin immunoprecipitation sequencing (ChIP-seq). Serum-induced PDE3A expression was affected by increasing the amount of SFPQ binding to the upstream regulatory region of PDE3A In addition, transcription of PDE3A was lower in human cervical adenocarcinoma cells compared to normal cervical tissue. Furthermore, over-expression of PDE3A induced sensitivity to anti-cancer therapeutic agent, 6-(4-(diethylamino)-3-nitrophenyl)-5-methyl-4,5-dihydropyridazin-3(2H)-one (DNMDP), in HeLa cells. Taken together, these results suggest that SFPQ functions as a transcriptional activator of PDE3A, which is involved in the regulation of DNMDP sensitivity , offering a novel molecular target for the development of anticancer therapies.
منابع مشابه
NEAT1 long noncoding RNA regulates transcription via protein sequestration within subnuclear bodies
Paraspeckles are subnuclear structures formed around nuclear paraspeckle assembly transcript 1 (NEAT1)/MENε/β long noncoding RNA (lncRNA). Here we show that paraspeckles become dramatically enlarged after proteasome inhibition. This enlargement is mainly caused by NEAT1 transcriptional up-regulation rather than accumulation of undegraded paraspeckle proteins. Of interest, however, using immuno-...
متن کاملThe structure of human SFPQ reveals a coiled-coil mediated polymer essential for functional aggregation in gene regulation
SFPQ, (a.k.a. PSF), is a human tumor suppressor protein that regulates many important functions in the cell nucleus including coordination of long non-coding RNA molecules into nuclear bodies. Here we describe the first crystal structures of Splicing Factor Proline and Glutamine Rich (SFPQ), revealing structural similarity to the related PSPC1/NONO heterodimer and a strikingly extended structur...
متن کاملNon-nuclear Pool of Splicing Factor SFPQ Regulates Axonal Transcripts Required for Normal Motor Development
Recent progress revealed the complexity of RNA processing and its association to human disorders. Here, we unveil a new facet of this complexity. Complete loss of function of the ubiquitous splicing factor SFPQ affects zebrafish motoneuron differentiation cell autonomously. In addition to its nuclear localization, the protein unexpectedly localizes to motor axons. The cytosolic version of SFPQ ...
متن کاملTau-Mediated Nuclear Depletion and Cytoplasmic Accumulation of SFPQ in Alzheimer's and Pick's Disease
Tau dysfunction characterizes neurodegenerative diseases such as Alzheimer's disease (AD) and frontotemporal lobar degeneration (FTLD). Here, we performed an unbiased SAGE (serial analysis of gene expression) of differentially expressed mRNAs in the amygdala of transgenic pR5 mice that express human tau carrying the P301L mutation previously identified in familial cases of FTLD. SAGE identified...
متن کاملThe Splicing Factor Proline-Glutamine Rich (SFPQ/PSF) Is Involved in Influenza Virus Transcription
The influenza A virus RNA polymerase is a heterotrimeric complex responsible for viral genome transcription and replication in the nucleus of infected cells. We recently carried out a proteomic analysis of purified polymerase expressed in human cells and identified a number of polymerase-associated cellular proteins. Here we characterise the role of one such host factors, SFPQ/PSF, during virus...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 37 شماره
صفحات -
تاریخ انتشار 2017